博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
树网的核 Vijos1362 NOIP2007 树结构 直径 暴搜
阅读量:6595 次
发布时间:2019-06-24

本文共 3200 字,大约阅读时间需要 10 分钟。

题面在最下方。

树结构的题做多了就会发现,本题所谓的树网的核(一段偏心距ECC最小的路径)一定是在树的直径上的。

我刚开始做的时候没想到这个,然后写了三个dfs讨论每条直径 Orz

其实只要认识到了这一点,那么这个题maxn=300,轻轻松松打暴力啊!

 

首先跑一次最短路得到整张图内点对<s,t>的距离 (Floyed是可以过的,但是我比较喜欢枚举每个点进行spfa)

两个for枚举一条路径的两个端点(假设是 < i , j >)

如果 dis<i,j> ≤ s,就计算偏心距并更新答案。

算<i,j>的偏心距:再一次枚举所有点,设为s,计算s到路径<i,j>的距离D。由树结构的特殊性可以证明,D=(dis<s,i>+dis<s,j>-dis<i,j>)/ 2

那么偏心距就是所有D里面的最大值。同时ans=min(ans,偏心距)

最后输出ans即可

 

附上AC代码

1 #include
2 #include
3 #include
4 using namespace std; 5 template
inline void read(T &_a){ 6 bool f=0;int _ch=getchar();_a=0; 7 while(_ch<'0' || _ch>'9'){
if(_ch=='-')f=1;_ch=getchar();} 8 while(_ch>='0' && _ch<='9'){_a=(_a<<1)+(_a<<3)+_ch-'0';_ch=getchar();} 9 if(f)_a=-_a;10 }11 12 const int maxn=301,maxs=1001;13 struct edge14 {15 int to,dis,next;16 }w[maxn<<1];17 int n,s,egcnt=1,head[maxn],dis[maxn][maxn],ans=0x7fffffff,h,tail,q[10001];18 bool ins[maxn];19 20 inline void addedge(int from,int to,int dis)21 {22 w[++egcnt].dis=dis;23 w[egcnt].to=to;24 w[egcnt].next=head[from];25 head[from]=egcnt;26 w[++egcnt].dis=dis;27 w[egcnt].to=from;28 w[egcnt].next=head[to];29 head[to]=egcnt;30 }31 32 inline void spfa(int u)33 {34 memset(ins,0,sizeof(ins));35 h=0; tail=1; q[1]=u; dis[u][u]=0;36 while(h!=tail)37 {38 h=h%10000+1;39 int now=q[h];40 ins[now]=false;41 for (register int i=head[now];i;i=w[i].next)42 {43 if(dis[u][w[i].to]>dis[u][now]+w[i].dis)44 {45 dis[u][w[i].to]=dis[u][now]+w[i].dis;46 if(!ins[w[i].to])47 {48 ins[w[i].to]=true;49 tail=tail%10000+1;50 q[tail]=w[i].to;51 }52 }53 }54 }55 }56 57 int main()58 {59 read(n); read(s);60 for (register int i=1,a,b,c;i
>1);69 ans=min(ans,maxdis);70 }71 printf("%d",ans);72 return 0;73 }
View Code

 

描述

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

img

格式

输入格式

包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

所给的数据都是正确的,不必检验。

输出格式

只有一个非负整数,为指定意义下的最小偏心距。

样例1

样例输入1

5 21 2 52 3 22 4 42 5 3

样例输出1

5

限制

1s

提示

40%的数据满足:5<=n<=15

70%的数据满足:5<=n<=80
100%的数据满足:5<=n<=300, 0<=s<=1000。边长度为不超过1000的正整数。

 

P.S. 本题在bzoj1999有加强版,maxn增大至500000,传送门:

转载于:https://www.cnblogs.com/jaywang/p/7698525.html

你可能感兴趣的文章
操作步骤:用ildasm/ilasm修改IL代码
查看>>
HTTP POST GET 本质区别详解
查看>>
正则表达式 之 C#后台应用
查看>>
对称加密与非对称加密
查看>>
OC Copy基本使用(深拷贝和浅拷贝)
查看>>
老舍:有了小孩以后,才知道一切事情没那么简单
查看>>
SpringBoot参数校验
查看>>
03Go 类型总结
查看>>
PHP To Go 转型手记 (二)
查看>>
新造了一个管理模板代码的工具 -- Pharah
查看>>
一步一步创建ASP.NET MVC5程序[Repository+Autofac+Automapper+SqlSugar](十)
查看>>
通用Windows平台应用程序开始恢复Win32功能
查看>>
Airbnb如何简化1000多位工程师的Kubernetes工作流程?
查看>>
Scrum Master的成功定义是什么?
查看>>
Windows Server入门系列37 创建网络共享
查看>>
自己diy封装xp操作系统
查看>>
veritas升级及备份至磁盘两个问题简要说明
查看>>
Scoket:UDP通讯模型
查看>>
扯点关于经济的淡-贸易顺差都是有利的吗
查看>>
国产IT厂商激辩微软 微软反垄断调查或有突破
查看>>